Android LIvedata with ViewModel And Room

Hey folks, in this post we are going to implement livedata with SpinnerLiveData is an observable data holder class. Unlike a regular observable, LiveData is lifecycle-aware, meaning it respects the lifecycle of other app components, such as activities, fragments, or services. This awareness ensures LiveData only updates app component observers that are in an active lifecycle state. To know more about livedata and ViewModel ->LiveData,ViewModel

Before moving further, you should atleast have a basic idea of Room working and for that you can check our bloggetting-started-with-room or google-docs-for-room.

Create a new project and add dependencies for Room, ViewModel, Livedata:

// ViewModel and LiveData
implementation 'android.arch.lifecycle:extensions:1.0.0'
implementation 'android.arch.lifecycle:common-java8:1.0.0'
// Room
implementation ''
annotationProcessor ""

Create a Database, Entity, Dao(Data Access Object) for room:-

Database:- This class will be used to create Database, get Database instance and  Dao. “app_database” is our database name.

@Database(entities = {Item.class}, version = 1,exportSchema = false)
public abstract class AppDatabase extends RoomDatabase {
 private static AppDatabase INSTANCE;
 public static AppDatabase getDatabase(Context context)
 INSTANCE= Room.databaseBuilder(context,AppDatabase.class,"app_database").build();
 return INSTANCE;
 public abstract ItemDao itemDao();

Entity:- This class will have a mapping SQLite table in the database

public class Item {
    private String itemname;
    @PrimaryKey(autoGenerate = true)
    private int _id;

    public String getItemname() {
        return itemname;

    public void set_id(int _id) {
        this._id = _id;

    public void setItemname(String itemname) {
        this.itemname =itemname;

    public int get_id() {
        return _id;

Dao:-This class will be used for accessing the table. In our project we just need to insert Item and fetch all list.

public interface ItemDao {
    public void insert(Item item);

    @Query("select * from Item")
    public LiveData<List<Item>> getAllItems();

ViewModel:-The ViewModel class is designed to store and manage UI-related data in a lifecycle conscious way. The ViewModel class allows data to survive configuration changes such as screen rotations.

If the system destroys or re-creates a UI controller, any transient UI-related data you store in them is lost. For example, your app may include a list of users in one of its activities. When the activity is re-created for a configuration change, the new activity has to re-fetch the list of users. For simple data, the activity can use the onSaveInstanceState() method and restore its data from the bundle in onCreate(), but this approach is only suitable for small amounts of data that can be serialized then deserialized, not for potentially large amounts of data like a list of users or bitmaps.

Another problem is that UI controllers frequently need to make asynchronous calls that may take some time to return. The UI controller needs to manage these calls and ensure the system cleans them up after it’s destroyed to avoid potential memory leaks. This management requires a lot of maintenance, and in the case where the object is re-created for a configuration change, it’s a waste of resources since the object may have to reissue calls it has already made.

UI controllers such as activities and fragments are primarily intended to display UI data, react to user actions, or handle operating system communication, such as permission requests. Requiring UI controllers to also be responsible for loading data from a database or network adds bloat to the class. Assigning excessive responsibility to UI controllers can result in a single class that tries to handle all of an app’s work by itself, instead of delegating work to other classes. Assigning excessive responsibility to the UI controllers in this way also makes testing a lot harder.It’s easier and more efficient to separate out view data ownership from UI controller logic.

Our ViewModel:- for creating a viewmodel class you can either extend the AndroidViewModel class(if context is required as it contains application context)  or ViewModel class.

public class ItemViewModel extends AndroidViewModel {
    private final Application application;
    private final AppDatabase appDatabase;

    public ItemViewModel(@NonNull Application application) {
        this.application = application;
        appDatabase = AppDatabase.getDatabase(this.getApplication());

    public void insert(final Item item) {
        new InsertItem().execute();

    public LiveData<List<Item>> getAllItems() {
        LiveData<List<Item>> itemlivedata = null;
        try {
            itemlivedata = new LoadAllItems().execute().get();
        } catch (InterruptedException e) {
        } catch (ExecutionException e) {
        return itemlivedata;

    class LoadAllItems extends AsyncTask<Void, Void, LiveData<List<Item>>> {
        protected LiveData<List<Item>> doInBackground(Void... voids) {
            return appDatabase.ItemDao().getAllItems();

    class InsertItem extends AsyncTask<Void, Void, Void> {
        protected void doInBackground(Void... voids) {

activity_main.xml :- In Our activity_main.xml we are going to add a edittext, button and spinner, edittext to add items in database and spinner to show all the items available in room.

    android:layout_marginTop="10dp" />

    android:hint="item..." />



Whenever the livedata data changes, onChanged method of the observer is called. Generally, LiveData delivers updates only when data changes, and only to active observers. An exception to this behavior is that observers also receive an update when they change from an inactive to an active state. Furthermore, if the observer changes from inactive to active a second time, it only receives an update if the value has changed since the last time it became active.

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

    private AppCompatEditText item_et;
    private AppCompatSpinner item_spinner;
    private AppCompatButton mSaveitem_btn;
    private List<Item> items = new ArrayList<>();
    private ArrayAdapter aa;
    private ItemViewModel itemviewmodel;
    private ArrayList<String> itemsname = new ArrayList<>();
    protected void onCreate(Bundle savedInstanceState) {
        item_et = (AppCompatEditText) findViewById(;
        item_spinner = (AppCompatSpinner) findViewById(;
        mSaveitem_btn = (AppCompatButton) findViewById(;
        aa = new ArrayAdapter(this, android.R.layout.simple_spinner_item,itemsname);
        itemviewmodel = ViewModelProviders.of(this).get(ItemViewModel.class);
                                          new android.arch.lifecycle.Observer<List<Item>>() 
            public void onChanged(@Nullable List<Item> newitems) {
                if (newitems != null) {
                    items =newitems;
                    for (int i = 0; i < items.size(); i++) {

    public void onClick(View view) {
        switch (view.getId()) {
                //add item to database
                String itemname = item_et.getText().toString();
                Item item = new Item();




Recent Post

  • A Comprehensive Guide to Sentiment Analysis Using NLP

    Businesses need to understand public interests, attitudes, behavior, and trigger points in today’s dynamic and competitive market. This enables them to efficiently serve their customers, grab opportunities, grow, and develop resilience in the face of a constantly shifting market. Many businesses find it challenging to process vast amounts of text-based data in order to get […]

  • How AI Is Revolutionizing Banking: Transforming Customer Experiences and Enhancing Financial Security

    Banking is a huge industry with a global Banking market likely to achieve a Net Interest Income of USD 10.34 trillion, with Traditional Banks holding a huge stake of USD 8.30 trillion. According to Statista’s projections suggest an annual growth rate of 4.82% (CAGR 2024-2028), culminating in a market volume of USD12.48 trillion by 2028. […]

  • Mastering Hyperparameter Tuning in Python: Strategies, Techniques, and Tools for Model Optimization

    Understanding various aspects of deep learning and machine learning can often feel like stepping into uncharted territory with no clue where to go. As you start exploring various algorithms and data, you realize that success is based on more than just building a raw model, it’s more about fine-tuning it to perfection. And when we […]

  • What is Transfer Learning? Exploring The Popular Deep Learning Approach

    Have you ever thought about how quickly your smartphone recognizes faces in photos or suggests text as you type? Behind these features, there’s a remarkable technique called Transfer Learning that expands the capabilities of Artificial Intelligence. Now you must be wondering- What is Transfer Learning ? Picture this: Instead of starting from the square from […]

  • LLMOps Essentials: A Practical Guide To Operationalizing Large Language Models

    When you engage with ChatGPT or any other Generative AI tool, you just type and enter your query and Tada!! You get your answer in seconds. Ever wondered how it happens and how it is so quick? Let’s peel back the curtain of the LLMs a bit. What actually happens behind the screen is a […]

  • Building Intelligent AI Models For Enterprise Success: Insider Strategies 

    Just picture a world where machines think and learn like us. It might sound like a scene straight out of a sci-fi movie, right? Well, guess what? We are already living in that world now. Today, data, clever algorithms, and AI models are changing the way businesses operate. AI models are serving as a brilliant […]

Click to Copy