Google Custom Search with NodeJS

Goo

Google provides a custom search API by which you can use the power of google search engine in your own application. The base URL for the REST version of custom search API is:

https://www.googleapis.com/customsearch/v1

Before moving on to integration part, we need two things.

  1. API KEY
  2. Search Engine ID

The API KEY can be created by tapping the GET A KEY button and creating a new project at the following link:

https://developers.google.com/custom-search/json-api/v1/introduction

The next step is the search engine ID. You need to create an instance of a search engine at:

https://cse.google.com/

  1. Here you need to add a new instance, give the name of the engine, any website and just create it for now.
  2. Now go to its control panel and in the basic options > Sites to search, you have the option to search the entire web (with emphasis on some websites if you want to include some) or search only for some websites (should be included in list, patterns can also be included).
  3. Configure it as per your choice and in Details section you will find the search engine ID by clicking on the Search Engine ID button.

Now you are ready to integrate. The code to integrate the API using Express and Node JS is:

var express = require(‘express’);

var path = require(‘path’);

var app = express();

var request = require(‘request’);

// The main search function

var google_web_search = function(search, callback) {

    console.log(‘Searching the web for: ‘, search);

    var options = {

        method: ‘GET’,

        url: ‘https://www.googleapis.com/customsearch/v1’,

        qs: {

            q: search,

            key: ‘<API_KEY>’,

            cx: ‘<SEARCH_ENGINE_ID>’,

        }

    };

    request(options, function (error, response, body) {

        callback(error, body);

    });

};

app.get(‘/’, function (req, res) {

   google_web_search(‘<YOUR_SEARCH_QUERY>’, function(error, body) {

     if (!error) {

        res.send(body);

     } else {

        throw new Error(error);

     }

   });

});

app.listen(3000, function () {

    console.log(‘Example app listening on port 3000!’);

});

If you want more results, then you can use pagination by adding two query params:

  1. num: specifies the number of results to return in the response
  2. start: specifies the number of results to skip

gle provides a custom search API by which you can use the power of google search engine in your own application. The base URL for the REST version of custom search API is:

https://www.googleapis.com/customsearch/v1

Before moving on to integration part, we need two things.
1. API KEY
2. Search Engine ID

The API KEY can be created by tapping the GET A KEY button and creating a new project at the following link:

https://developers.google.com/custom-search/json-api/v1/introduction

The next step is the search engine ID. You need to create an instance of a search engine at:

https://cse.google.com/

1. Here you need to add a new instance, give the name of the engine, any website and just create it for now.
2. Now go to its control panel and in the basic options > Sites to search, you have the option to search the entire web (with emphasis on some websites if you want to include some) or search only for some websites (should be included in list, patterns can also be included).
3. Configure it as per your choice and in Details section you will find the search engine ID by clicking on the Search Engine ID button.

Now you are ready to integrate. The code to integrate the API using Express and Node JS is:

var express = require('express');
var path = require('path');
var app = express();

var request = require('request');

// The main search function
var google_web_search = function(search, callback) {
    console.log('Searching the web for: ', search);
    var options = {
        method: 'GET',
        url: 'https://www.googleapis.com/customsearch/v1',
        qs: {
            q: search,
            key: '<API_KEY>',
            cx: '<SEARCH_ENGINE_ID>',
        }
    };

    request(options, function (error, response, body) {
        callback(error, body);
    });
};
app.get('/', function (req, res) {
   google_web_search('<YOUR_SEARCH_QUERY>', function(error, body) {
     if (!error) {
        res.send(body);
     } else {
        throw new Error(error);
     }
   });
});

app.listen(3000, function () {
    console.log('Example app listening on port 3000!');
});

If you want more results, then you can use pagination by adding two query params:
1. num: specifies the number of results to return in the response
2. start: specifies the number of results to skip

Comments

One response to “Google Custom Search with NodeJS”

  1. Thanks for sharing. I read many of your blog posts, cool, your blog is very good.

Recent Post

  • Behind the Scenes: Building a Multi-Agent System to Handle 80% of Support Tickets Autonomously

    Let’s face it—support tickets are the silent killers of productivity. Behind every “Where’s my order?” or “I forgot my password” lies a bloated system of repetitive manual work, overworked agents, and frustrated customers stuck in virtual queues. Now, consider this: what if 80% of those tickets never needed a human in the first place? In […]

  • Agentic AI Explained: Definition, Benefits, Challenges and Use Cases

    Artificial Intelligence (AI) has evolved significantly, transitioning from rule-based systems to more dynamic, learning-based models. Among the latest advancements is Agentic AI, an AI paradigm that enhances autonomy, decision-making, and self-improvement capabilities. Unlike traditional AI, which primarily follows predefined rules or models, Agentic AI exhibits goal-oriented behavior, adapts to complex environments, and makes decisions with […]

  • AI in payment: Key applications, advantages, and regulatory considerations

    The financial landscape is undergoing a profound transformation, driven by the rapid advancements in artificial intelligence (AI). From enhancing security to streamlining transactions, AI is revolutionizing how we make payments, making the process faster, safer, and more seamless. The global AI in payments market is projected to reach an impressive USD 12.7 billion by 2026, […]

  • Generative AI for IT: Integration approaches, use cases, challenges, ROI evaluation and future outlook

    Generative AI is a game-changer in the IT sector, driving significant cost reductions and operational efficiencies. According to a BCG analysis, Generative AI (GenAI) has the potential to deliver up to 10% savings on IT spending—a transformation that is reshaping multiple facets of technology. The impact is especially profound in application development, where nearly 75% […]

  • Generative AI in Manufacturing: Integration approaches, use cases and future outlook

    Generative AI is reshaping manufacturing by providing advanced solutions to longstanding challenges in the industry. With its ability to streamline production, optimize resource allocation, and enhance quality control, GenAI offers manufacturers new levels of operational efficiency and innovation. Unlike traditional automation, which primarily focuses on repetitive tasks, GenAI enables more dynamic and data-driven decision-making processes, […]

  • Generative AI in Healthcare: Integration, use cases, challenges, ROI, and future outlook

    Generative AI (GenAI) is revolutionizing the healthcare industry, enabling enhanced patient care, operational efficiency, and advanced decision-making. From automating administrative workflows to assisting in clinical diagnoses, GenAI is reshaping how healthcare providers, payers, and technology firms deliver services. A Q1 2024 survey of 100 US healthcare leaders revealed that over 70% have already implemented or […]

Click to Copy